SSN: A Strategy Guide to Submarine Warfare Page 2
As a practical matter, the Falkland Islands War was determined at that point. Ownership of any island is determined by control of the seas around it, and Argentina could not control the sea. The Royal Navy’s SSNs prevented that, the first step in the RN’s campaign to establish its own sea-control posture, making a successful invasion possible. The sinking of the cruiser General Belgrano was the unnecessary confirmation of what should have been obvious. While the nuclear-powered attack submarine may not be the most useful warship in the world since it cannot perform every traditional navy mission, it can deny an adversary the ability to execute any mission at sea.
“Here be monsters,” the charts of ancient mariners used to say. They weren’t right then, but current charts, especially those on surface warships, might profitably be marked to show that outside the thirty-fathom curve, yes, there be monsters. Nuclear-powered monsters.
The Silent Service
Early History
When tracing the roots of the modern submarine, one is usually faced with a number of different places to start. Legend has it that Alexander the Great descended into the ocean in 332 B.C. near the city of Tyre, in a primitive diving bell. The great mind of Leonardo da Vinci is said to have created a primitive submersible boat of wooden frame design covered in goatskins, with oars providing propulsion through waterproof sweeps. A British contribution to early submarine concepts came in the late 1500s from William Bourne, a carpenter and gunmaker. It included the concept of double hull construction, as well as ballast and trim systems. The first concept for a military submarine came from a Dutch physicist, Cornelius van Drebbel. In addition to actually building and demonstrating a primitive submersible, he proposed a design specifically created to destroy other ships.
It was the United States (albeit still colonies in rebellion) that created the first workable military submarine design. In 1776, a Yale University student named David Bushnell designed the appropriately named Turtle. The Turtle was an egg-shaped submersible boat that had the ability to sneak up on a ship, submerge under the intended victim, bore a drill bit with a waterproof time bomb attached into the bottom of the hull, and escape before the bomb was detonated by a clockwork fuse. It was propelled by a hand-cranked screw, and had room for one overworked crewman.
On the night of September 6, 1776, Sergeant Ezra Lee of the Continental Army took the Turtle to attack HMS Eagle of the British squadron blockading Boston. But when he maneuvered underneath, he was unable to attach his bomb. During his escape, he was followed by British soldiers in a rowboat. Frantic, he released the bomb, which ² exploded literally in the faces of his pursuers. Though all parties escaped unhurt, it was a promising start to the modern military submarine.
This early submarine, the Turtle, was used in 1776 by the Continental Army to attack the HMS Eagle of the British blockade squadron outside of Boston.
JACK RYAN ENTERPRISES, LTD.
A more substantive advance was the Nautilus, designed by the American Robert Fulton, who would go on to design the first steam-boat. The Nautilus was a distinct improvement over the Turtle in that it cruised under the intended victim, towing the explosive bomb or torpedo, as it was then called, until the bomb contacted the target and detonated with a contact fuse. The design was an exceptional success, destroying a number of target vessels in test runs. The French, who were sufficiently impressed to award Fulton a contract, actually considered for a time using it in the planned invasion of Britain. By 1804 Fulton was demonstrating the boat to the British, who despised the idea for its underhanded nature and, more importantly, its potential to sweep British ships from coastal zones. In the end, Fulton returned to America to begin work on his steamboats.
The CSS Hunley, the first submarine to sink an enemy warship, the USS Housatonic, in 1864. JACK RYAN ENTERPRISES, LTD.
It remained for the Americans to create a submarine that would actually sink an enemy vessel in wartime. In 1863 a submersible boat was designed by Confederate army officer Horace Hunley. His boat, the CSS H. L. Hunley, was propelled by eight men turning a hand-cranked propeller. For armament, an explosive mine or torpedo was secured to a long spar protruding out in front of the Hunley. The idea was for the Hunley to ram the spar torpedo into the side of a target ship, where it would be detonated.
Unfortunately the Hunley was difficult to handle, and several crews, along with her designer, were killed during test dives. Nevertheless on October 17, 1864, the Hunley attacked the Union steam corvette Housatonic in the harbor at Charleston, South Carolina. In the ensuing attack the Hunley sank the Housatonic, although she herself was also sunk. A submarine had finally drawn blood in combat.
Over the next four decades a number of different submarine designs evolved in various European countries. In the 1880s a really practical design was built in America by an Irish immigrant, John Holland. Originally backed by the Fenian Society (an early North American free Ireland society), it was designed to allow Irish separatists to attack units of the British fleet. In 1900 Holland won a submarine design competition held by the U.S. Navy. From this contract came the USS Holland (SS-1), the first practical combat submarine. The Holland included such innovative features as self-propelled torpedoes fired from a reloadable tube, a battery-powered electric motor for submerged operations, and an advanced hull shape to allow it to move efficiently through the seas. The design was so successful that the U.S. Navy eventually bought a total of seven Holland-designed boats. Ironically, the British even bought some of the Holland boats for the Royal Navy. Holland’s company, the Electric Boat Company, continues to build submarines as part of General Dynamics Corporation.
German submarine U-58 alongside USS Fanning (DD-37) to have her crew removed after being forced to surface November 17, 1917. OFFICIAL U.S. NAVY PHOTO
World War I
The period before World War I saw a number of innovations in military submarines. This included the development of diesel engines, improved periscopes and torpedoes, and the development of wireless technology, which allowed them to be directed from shore bases. Within a month of the outbreak of World War I, the German Unterseeboot fleet, or U-boats as they came to be called, were sinking British naval units in the North Sea. In one well-known incident the elderly U-9 sank three British armored cruisers, causing over 1,400 casualties. Throughout the war, both the Allies and the Central Powers took a toll of each other’s warships, especially in the Gallipoli Campaign in the Dardanelles.
During World War I the Germans consistently led the world in the production of new U-boats. But the international rules concerning attacks on merchant ships kept the Germans from fully utilizing their potential. Germany feared that unrestricted submarine warfare, with the practice of not warning the victim, might bring the United States into the war. By 1915 the need to isolate Britain from her sources of war supplies caused Kaiser Wilhelm to declare unrestricted submarine warfare an active policy. Soon German submarines were taking a huge toll of merchant shipping and threatening to win the war against Britain all on their own. But after the ocean liner Lusitania was sunk by U-20 in 1915, the United States entered the war on the side of the Allies. It would take two more years for the Allies to win the war and beat back the U-boat threat.
So important was the submarine in World War I that a whole new form of naval conflict, antisubmarine warfare (ASW), was born. From it came techniques such as the convoy and the Q-ship (armed merchant decoy), as well as weapons and sensors such as the antisubmarine detector (ASDIC/sonar), and the depth charge. And so deadly had the U-boats been that Germany was specifically banned from having them under the Treaty of Versailles. The victors of World War I split up the remaining U-boats for examination and testing. That might have been the end of military submarines except that the seeds of World War II were contained in the Treaty of Versailles, and the military submarine would continue to develop.
World War II
During the period between the world wars, submarine development continued at a steady pace. In the United States
and Britain efforts were concentrated on the creation of long-range “fleet” submarines designed to support the battle fleets, while nations such as Japan, Russia, and Italy developed submarines more for coastal defense. Once Adolf Hitler had risen to power, Germany secretly began to rebuild its dreaded fleet of U-boats, in direct violation of the Treaty of Versailles. By the beginning of World War II, a number of improvements were made to the submarines themselves, such as torpedoes with magnetic fuses and sonars, and even small radar sets. And in Germany, the United States, and England, naval leaders had evolved very specific plans on how to best use these improvements.
By the outbreak of war in 1939, Germany had deployed her small fleet of U-boats at sea. Within hours, the U-30 sank the ocean liner Athena, signaling another round of unrestricted submarine warfare. Within a few weeks of the opening of hostilities, the U-boats had sunk a number of British warships and merchant vessels. The British responded with a series of patrols by their own fleet of submarines, damaging several German cruisers and sinking several U-boats. In addition, mindful of the damage inflicted upon merchant shipping in World War I, the British immediately instituted a system of transatlantic convoys and began to build up their ASW forces. But German fortunes soared with the capture of France and Norway in 1940, and once these prizes had been won, U-boats could be based much closer to the convoy lanes supplying Britain. The Battle of the Atlantic was on and would not be completely decided until the end of the war in 1945.
U-185 sinking by the stern after being bombed by planes from USS Core (CVE-13) in the central Atlantic on August 24, 1943. OFFICIAL U.S. NAVY PHOTO
The Battle of the Atlantic was a battle of statistics: tonnage and numbers of ships sunk versus numbers of U-boats available and sunk. For Admiral Karl Dönitz, the German U-boat commander, it was a battle to get the greatest number of U-boats possible out onto the convoy routes. To do this he implemented what were called wolf pack tactics, setting a large number (ten to fifteen) of U-boats onto a convoy all at the same time. For a while, particularly during 1941 and 1942, the tac-tics worked. No less a figure than Sir Winston Churchill was reported to have said, “The only thing that truly worried me was the U-boat menace.” He had much to be worried about, for Admiral Dönitz’s U-boat force almost won the war by starving Great Britain into submission.
USS Barb (SS-220), a World War II U.S. fleet submarine. OFFICIAL U.S. NAVY PHOTO
The British fought back though, using advanced tactics and equipment such as radar, escort corvettes, and frigates, and developing the small escort carrier.
In addition, the British had the ultimate secret weapon, Ultra. Ultra was the British program to penetrate German command communications, protected by the Enigma cipher system. Early in the war, with valuable contributions from the Poles and the French, England began to read an ever-growing flow of German messages. By 1941, through a combination of incredible technical analysis and outright theft of German cipher key books and captured Enigma equipment, the British were able to read virtually every message sent and received by the U-boats. Ultra allowed the British to route their convoys around known wolf packs and to start aggressively hunting the U-boats with aircraft and so-called hunter-killer groups. By 1943 the balance had turned decisively in favor of the Allies. Despite a number of German innovations such as the snorkel, homing torpedoes, and antisonar coatings, the battle was eventually won by the Allies.
In the Pacific, submarines actually won a major campaign against merchant shipping. In December 1941 Imperial Japan initiated a war of conquest against the Allies. At the start, things went very poorly for the United States. With most of their battleship force sunk or out of action after the bombing of Pearl Harbor, the only way the Americans could strike back was with their well-developed force of fleet submarines. It took a while to get rolling, especially when eighteen months were needed to repair a series of faults with the American Mark 14 torpedo and its magnetic fuse, but by late 1943 the American subs were beginning to make a real difference in the amount of material getting to Japan’s war industries. Under the command of Admiral Charles Lockwood, the American boats were starting to starve Japan into submission. In addition, they were taking an increasing toll of Japanese warships.
By the end of the war in 1945, American fleet subs had sunk about a third of all the Japanese warships destroyed, and over half of the merchant ships. These successes did not come without cost. Over fifty U.S. boats had their epitaph written in the words “overdue and presumed lost.” Along with the boats went some of the very best of the U.S. skippers, men like “Mush” Morton of USS Wahoo, “Sam” Dealey of USS Harder, and Howard C. Gilmore of USS Growler. Overall the U.S. submarine forces had the highest percentage of losses of any branch of the U.S. Navy. The American sub forces quietly paid in blood and boats for their victory, and earned for themselves a nickname that would stick: the silent service.
The Early Cold War Years
Almost as soon as the Allies won their victory over the Axis powers, another conflict, more sinister in character, started up between the Soviet Union and its former allies in the west. During the war the Russians had built the world’s largest force of submarines. With the coming of what came to be known as the Cold War, they continued to build even further. For the next forty-five years the western allies, formed into NATO, lived in deathly fear that the USSR would flood its force of over three hundred submarines into the sea lanes. This threat—that the Russians could repeat or even better the performance of the Germans during the world wars—generated the main Cold War naval mission of the NATO forces, antisubmarine warfare.
The first decade of the effort was accomplished primarily by force of numbers. Despite the hopes that a decisive submarine technology would be found, none was. Improvements in submarine and ASW technology would evolve slowly. The major bottleneck was in the area of propulsion. Simply put, none of the different propulsion technologies—diesel, hydrogen peroxide, or gasoline—had ever provided the sustained high underwater speeds needed. The answer to this problem, though, was about to be found in the United States.
The Nuclear Revolution
The American propulsion breakthrough came from an unlikely source, a diminutive U.S. Navy captain named Hyman G. Rickover. Assigned after the war to the Navy’s engineering branch, he was among the first to recognize the possibilities of creating small nuclear power plants that might be installed in submarines and surface ships. With these reactors, ships might steam tens of thousands of miles without refueling. For submarines in particular, it would mean freedom from having to come to the surface to obtain air for the diesel engines. In Rickover, and his newly created office of Director, Naval Reactors (DNR), the Navy had found the perfect blend of engineer, political insider, and bureaucrat to bring the first nuclear ships to fruition.
Submarines were Rickover’s first priority, and a contract was let in the early 1950s for construction of the USS Nautilus (SSN-571) by the Electric Boat Division of General Dynamics. Utilizing a pressurized water reactor to produce steam for turbines, the design was successful beyond the wildest dreams of now-Admiral Rickover and the Navy. Considering that she was only a proof-of-concept vessel or prototype (the U.S. Navy has always considered its submarine prototypes fleet units, not research vessels), albeit armed with a full suite of weapons and sensors, the achievements of Nautilus and her crew were staggering. They dominated virtually every NATO exercise they participated in. In addition, in 1957 Nautilus became the first ship to transit the Arctic from the Pacific to the Atlantic, opening a whole new area for submarine operations.
USS Nautilus (SSN-571). JACK RYAN ENTERPRISES, LTD.
USS Seawolf (SSN-575). JACK RYAN ENTERPRISES, LTD.
Crew members of USS Skate (SSN 578) on deck during Arctic operations in March 1959. OFFICIAL U.S. NAVY PHOTO BY LIEUTENANT MEADER
USS Skate (SSN-578). JACK RYAN ENTERPRISES, LTD.
USS Triton (SSN-586). JACK RYAN ENTERPRISES, LTD.
USS Skipjack (SSN-585). JACK RYAN ENT
ERPRISES, LTD.
Following the Nautilus came a second prototype, the USS Seawolf (SSN-575), powered by a liquid sodium reactor. Designed to achieve higher power output within a smaller volume, the reactor proved troublesome and was eventually replaced with one of the pressurized water type. In addition, the United States undertook production of a small class of nuclear boats (six) based on the design of the Nautilus. Named for the first unit of the class, the USS Skate (SSN-578), they provided a vast base of experience for operating nuclear submarines, as well as being extremely useful fleet units.
Skate herself made history by being the first submarine to surface at the geographic North Pole. Other prototypes such as the USS Halibut (SSN-587) and the USS Triton (SSN-586) explored the possibilities of using nuclear submarines to launch cruise missiles, and operating as a radar picket (to extend radar coverage for aircraft carrier groups). In 1960 Triton made history by becoming the first submarine to circumnavigate the globe submerged. Under the command of one of the U.S. Navy’s best-known submariners, Commander Edward Beach (best known for writing the naval classic Run Silent, Run Deep), Triton duplicated the course of navigator Ferdinand Magellan some four centuries earlier.
The early U.S. nuclear boats were limited to a top speed of about 20 knots, submerged or surfaced.1 These early boats had been built around conventional hull forms and were thus limited by the horse-powerof their reactor plants and the drag from their hulls. By this time the United States had experimented with a teardrop-shaped prototype diesel-electric submarine, the USS Albacore, which was able to reach submerged speeds of over 30 knots.2 Combining the hull of the Albacore with Rickover ’s nuclear power plant, a new class of undersea hunter was born. USS Skipjack (SSN-585), the lead of a six-boat class, went to sea as the fastest submarine in the world. By 1960 the U.S. Navy had a fleet of nuclear submarines and a huge lead on the USSR and Great Britain, which had started their nuclear submarine programs later.